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    Outline:
What  T do we see in A+A and elementary 
particle reactions? Do these T signal PT?
A bit of  history: Stat. Bootstrap Model; 
MIT Bag Model... Problems with GCE.
MCE:Properties of Hagedorn resonances = 
Perfect Thermostats and Particle Reservoirs
Open Questions and Conclusions



Phase Diagram
Partonic World: 
Deconfinement, Chiral 
Symmetry Restoration, 
Color S-Conductivity...

Hadronic World: 
Pairing (S-Conductive), 
Shape Transitions, 
Nuclear Liquid-Gas 
Transition

Tc ≈ 18.1 MeV
ρc ≈ 0.53 ρ0

pc ≈ 0.41 MeV/fm3

<=> Hadronic World

        Transition:  
This Talk



Temperatures in A+A Reactions

Lattice QCD at  0  baryonic density: 
transition T = 170 +/- 10 MeV , F.Karsch, 

Nucl.Phys.Proc.Suppl. 83(2000)

Chemical Freeze-out  at  highest  SPS and all  
RHIC  energies  T = 170 +/- 10 MeV :               
G.D.Yen, M.I.Gorenstein, PRC 59 (1999), P.Braun-Munzinger et al PLB 465 (1999)   
This T shows that hadronic composition of a created matter 
(including decay of resonances!) does not change while system 
expands and cools down.                                                                    
Remarkably, T = Const  while            grows by 12 times!
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Hagedorn Thermostat: A Novel View of Hadronic Thermodynamics
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A microcanonical treatment of Hagedorn systems, i.e. finite mass hadronic resonances with an
exponential mass spectrum controlled by the Hagedorn temperature TH , is performed. We show
that, in the absence of any restrictions, a Hagedorn system is a perfect thermostat, i.e. it imparts
its temperature TH to any other system in thermal contact with it. We study the thermodynamic
effects of the lower mass cut-off in the Hagedorn mass spectrum. We show that in the presence
of a single Hagedorn resonance the temperature of any number of NB Boltzmann particles differs
only slightly from TH up to the kinematically allowed limit N

kin
B . For NB > N

kin
B however, the

low mass cut-off leads to a decrease of the temperature as NB grows. The properties of Hagedorn
thermostats naturally explain a single value of hadronization temperature observed in elementary
particle collisions at high energies and lead to some experimental predictions.

PACS numbers: 25.75.-q, 25.75.Dw, 25.75.Nq, 13.85.-t

I. INTRODUCTION

The statistical bootstrap model (SBM) [1, 2] gave the
first evidence that an exponentially growing hadronic
mass spectrum gH(m) = exp[m/TH ] (mo/m)a for m →
∞ (the constants mo and a will be defined later) could
lead to new thermodynamics above the Hagedorn tem-
perature TH . Originally, the divergence of thermody-
namic functions at temperatures T above TH was in-
terpreted as the existence of a limiting temperature for
hadrons. In other words, it is impossible to build the
hadronic thermostat above TH . A few years later an
exponential form of the asymptotic mass spectrum was
found in the MIT bag model [3] and the associated limit-
ing temperature was interpreted as the phase transition
temperature to the partonic degrees of freedom [4]. These
results initiated extensive studies of hadronic thermody-
namics within the framework of the gas of bags model
(GBM) [5, 6]. The SBM with a non-zero proper vol-
ume [7] of hadronic bags was solved analytically [8] by
the Laplace transform to the isobaric ensemble and the
existence of phase transition from hadronic to partonic
matter (also called the quark gluon plasma, QGP) was
shown. Since then this technique has been used to solve
more sophisticated versions [9, 10] of the SBM and other
statistical models [11].

The major achievement of the SBM is that it naturally
explains why the temperature of secondary hadrons cre-
ated in hadronic collisions cannot exceed TH . However,
this result is based on two related assumptions. First, the
grand canonical formulation for SBM is appropriate, and
second, the resonances of infinite mass should contribute
to thermodynamic functions.

Very recently, using the microcanonical formulation,
we showed [12] that in the absence of any restrictions
on the mass, resonances with the Hagedorn mass spec-
trum behave as a perfect thermostat and perfect chemi-
cal reservoir, i.e. they impart the Hagedorn temperature
TH to particles which are in thermal contact and force
them to be in chemical equilibrium. Similar questions

about chemical properties of the heavy resonances were
addressed in [13].

Our analysis [12] based on very general thermody-
namic arguments shows that it is improper to include
any temperature other than TH into canonical and/or
grand canonical formulations of the statistical mechan-
ics of any system coupled to a Hagedorn thermostat. We
also demonstrated that the Hagedorn thermostat gener-
ates a volume independent concentration of the particles
in chemical equilibrium with it [12]. Thus, the entire
framework of the SBM and GBM, which is also based
on these two assumptions, must be revisited. In other
words, it is necessary to return to the foundations of the
statistical mechanics of hadrons and study the role of the
Hagedorn mass spectrum for finite masses of hadronic
resonances above the cut-off value mo, below which the
hadron mass spectrum is discrete. Such an analysis for
an arbitrary value of a in gH(m) was not done in [12],
and, will be performed here.

This refinement is important for understanding the
differences and similarities between A+A and elemen-
tary particle collisions at high energies. There are two
temperatures measured in A+A collisions that are very
close to the transition temperature TTr from hadron gas
to QGP calculated from the lattice quantum chromody-
namics [14] at vanishing baryonic density. The first is
the chemical freeze-out temperature at vanishing bary-
onic density TChem ≈ 175 ± 10 MeV of the most abun-
dant hadrons (pions, kaons, nucleons etc) extracted from
particle multiplicities at highest SPS [15] and all RHIC
[16] energies. Within the error bars TTr ≈ TChem is
also very close to the kinetic freeze-out temperature TKin

(i.e. hadronization temperature) found from the trans-
verse mass spectra of heavy, weakly interacting hadrons
such as Ω hyperons, J/ψ and ψ′ mesons at the highest
SPS energy [17, 18], and Ω-hyperons [19–21] and φ meson
[19, 21, 22] at

√
s = 130 A·GeV and

√
s = 200 A·GeV

energies of RHIC. The existence of the deconfinement
transition naturally explains the same value for all these



Early Hadronization Temperature
                  in A+A Collisions
Remarkably,  at  highest  SPS and all  RHIC  energies  
it is also T = 170 +/- 10 MeV!    
This T evidences that momentum spectra of some 
hadrons are frozen since the moment of their 
formation!
Necessary conditions: heavy hadrons, small cross-
sections with other hadrons, no low lying resonances 
with pions!         



Momentum Spectra at CERN SPS

• For linear dependence of the transverse fluid rapidity on radius
yT(r) = ymax

T · r/R

one can fit four spectra with one free parameter ymax
T = 0.276!

M.I. Gorenstein, K.A.B., M. Gaździcki, Phys. Rev. Lett. 88 (2002) 1323011
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SPS data are: Ω± by WA97, J. Phys. G27 375 (2001);

J/ψ and ψ′ by NA50, Phys. Lett. B499 85 (2001)

Together with parameters of pion freeze–out (Tf
∼= 120 MeV

and vT
∼= 0.55) one can establish the history of the expanding

hadron matter created in nuclear collisions!
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M.I. Gorenstein, K.A.B., M. Gaździcki, Phys. Rev. Lett. 88 (2002) 1323011

0 1 2 3

 m
T
!m (GeV/c

2
)

10
!8

10
!6

10
!4

10
!2

10
 0

10
!10

10
!12

 d
N

/(
m

T
d

m
T
) 

(a
.u

.)

!
!

J/"

!
+

"’

Pb + Pb at 158 A GeV

0.0 0.2 0.4 0.6 0.8

  v
T

100

120

140

160

180

200

 T
 (

M
e
V

)

Pb + Pb at 158 A GeV

!

QGP

!  J/"  "’

FREEZE!OUT

FREEZE!OUT

#
  E

X
P
A

N
SIO

N
  #

$

SPS data are: Ω± by WA97, J. Phys. G27 375 (2001);

J/ψ and ψ′ by NA50, Phys. Lett. B499 85 (2001)

Together with parameters of pion freeze–out (Tf
∼= 120 MeV

and vT
∼= 0.55) one can establish the history of the expanding

hadron matter created in nuclear collisions!

                   transverse momentum spectra indicate: T = 170+/-10 MeV

An elaborate Blast Wave approximation was used to fit data
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Is their hadronization T!



mT -Spectra at RHIC
√

sNN = 130GeV

Analysis of the mT -Spectra at Central Rapidity

dNi

mTdmTdy
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TH
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I0

(
pT sinh yT

TH

)
, (1.3)

di is degeneracy, λi is fugacity, ξ = r/RH; TH = 170 ± 5 MeV.

γS = 1 ± 0.05 is strange suppression factor for i = φ,Ω.

For i = J/ψ, ψ′ γC describes a possible deviation of charm
hadrons from complete chemical equilibrium .

ni = 2 for φ, J/ψ, ψ′ and ni = 3 for Ω.

K.A.B., M. Gazdzicki, M.I. Gorenstein, hep-ph/0211337 : χ2/ndf ∼= 0.46

λΩ− = 1.09 ± 0.06 , ymax
T = 0.74 ± 0.09 , τHR2

H = 275 ± 70 fm3/c

0 1 2 3

 m
T
!m (GeV)

10
!8

10
!6

10
!4

10
!2

10
 0

10
 2

 d
N

/(
m

T
d

m
T
d

y
) 

 (
G

eV
!

2
)

!

!/100

"

RHIC

!

0 1 2 3 4

  m (GeV)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

  
T

*
 (

M
eV

)

 low  p
T

 high p
T

 low  p
T

 high p
T

RHIC

" ! J/# #’

SPS
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Ω± data: G. van Buren [STAR] , talk at QM2002 .
⇒ predictions for J/ψ, ψ′
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                 transverse momentum spectra and emission volume         
show: T = 170+/-5 MeV is  their hadronization T!
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For 0 baryonic charge the Particle Ratios (chemical 
freeze-out) are  frozen since hadronization of 
QGP at T = 170+/-10 MeV.
For 0 baryonic charge the kinetic freeze out of 
some hadrons (                  mesons,        hyperons) 
occurs at their hadronization from QGP at same T!
Surprisingly, similar values of T are seen in el. 
particle collisions!

Evident Explanation for A+A reactions



Stat. Hadronization 
Model: T = 175+/-15 MeV 
F.Becattini,A.Ferroni, Acta. 
Phys. Polon. B 35 (2004)         

Hadronization in Elementary   
          Particle Collisions
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     Kaon   Inverse   Slopes  in 
Elementary  Particle Collisions

In wide          range     
T = 180 +/-20 MeV, 
M.Kliemant, B.Lungwitz, M.Gazdzicki, 
PRC 69 (2004) (Open symbols)

About the same T is for 
pions and nucleons

A+A data is a Step, 
inverse slopes are modified 
due to transverse expansion 
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A microcanonical treatment of Hagedorn systems, i.e. finite mass hadronic resonances with an
exponential mass spectrum controlled by the Hagedorn temperature TH , is performed. We show
that, in the absence of any restrictions, a Hagedorn system is a perfect thermostat, i.e. it imparts
its temperature TH to any other system in thermal contact with it. We study the thermodynamic
effects of the lower mass cut-off in the Hagedorn mass spectrum. We show that in the presence
of a single Hagedorn resonance the temperature of any number of NB Boltzmann particles differs
only slightly from TH up to the kinematically allowed limit N

kin
B . For NB > N

kin
B however, the

low mass cut-off leads to a decrease of the temperature as NB grows. The properties of Hagedorn
thermostats naturally explain a single value of hadronization temperature observed in elementary
particle collisions at high energies and lead to some experimental predictions.

PACS numbers: 25.75.-q, 25.75.Dw, 25.75.Nq, 13.85.-t

I. INTRODUCTION

The statistical bootstrap model (SBM) [1, 2] gave the
first evidence that an exponentially growing hadronic
mass spectrum gH(m) = exp[m/TH ] (mo/m)a for m →
∞ (the constants mo and a will be defined later) could
lead to new thermodynamics above the Hagedorn tem-
perature TH . Originally, the divergence of thermody-
namic functions at temperatures T above TH was in-
terpreted as the existence of a limiting temperature for
hadrons. In other words, it is impossible to build the
hadronic thermostat above TH . A few years later an
exponential form of the asymptotic mass spectrum was
found in the MIT bag model [3] and the associated limit-
ing temperature was interpreted as the phase transition
temperature to the partonic degrees of freedom [4]. These
results initiated extensive studies of hadronic thermody-
namics within the framework of the gas of bags model
(GBM) [5, 6]. The SBM with a non-zero proper vol-
ume [7] of hadronic bags was solved analytically [8] by
the Laplace transform to the isobaric ensemble and the
existence of phase transition from hadronic to partonic
matter (also called the quark gluon plasma, QGP) was
shown. Since then this technique has been used to solve
more sophisticated versions [9, 10] of the SBM and other
statistical models [11].

The major achievement of the SBM is that it naturally
explains why the temperature of secondary hadrons cre-
ated in hadronic collisions cannot exceed TH . However,
this result is based on two related assumptions. First, the
grand canonical formulation for SBM is appropriate, and
second, the resonances of infinite mass should contribute
to thermodynamic functions.

Very recently, using the microcanonical formulation,
we showed [12] that in the absence of any restrictions
on the mass, resonances with the Hagedorn mass spec-
trum behave as a perfect thermostat and perfect chemi-
cal reservoir, i.e. they impart the Hagedorn temperature
TH to particles which are in thermal contact and force
them to be in chemical equilibrium. Similar questions

about chemical properties of the heavy resonances were
addressed in [13].

Our analysis [12] based on very general thermody-
namic arguments shows that it is improper to include
any temperature other than TH into canonical and/or
grand canonical formulations of the statistical mechan-
ics of any system coupled to a Hagedorn thermostat. We
also demonstrated that the Hagedorn thermostat gener-
ates a volume independent concentration of the particles
in chemical equilibrium with it [12]. Thus, the entire
framework of the SBM and GBM, which is also based
on these two assumptions, must be revisited. In other
words, it is necessary to return to the foundations of the
statistical mechanics of hadrons and study the role of the
Hagedorn mass spectrum for finite masses of hadronic
resonances above the cut-off value mo, below which the
hadron mass spectrum is discrete. Such an analysis for
an arbitrary value of a in gH(m) was not done in [12],
and, will be performed here.

This refinement is important for understanding the
differences and similarities between A+A and elemen-
tary particle collisions at high energies. There are two
temperatures measured in A+A collisions that are very
close to the transition temperature TTr from hadron gas
to QGP calculated from the lattice quantum chromody-
namics [14] at vanishing baryonic density. The first is
the chemical freeze-out temperature at vanishing bary-
onic density TChem ≈ 175 ± 10 MeV of the most abun-
dant hadrons (pions, kaons, nucleons etc) extracted from
particle multiplicities at highest SPS [15] and all RHIC
[16] energies. Within the error bars TTr ≈ TChem is
also very close to the kinetic freeze-out temperature TKin

(i.e. hadronization temperature) found from the trans-
verse mass spectra of heavy, weakly interacting hadrons
such as Ω hyperons, J/ψ and ψ′ mesons at the highest
SPS energy [17, 18], and Ω-hyperons [19–21] and φ meson
[19, 21, 22] at

√
s = 130 A·GeV and

√
s = 200 A·GeV

energies of RHIC. The existence of the deconfinement
transition naturally explains the same value for all these
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Figure 6: (Color online) Energy dependence of the inverse slope parameter
T of transverse mass spectra of K+ mesons produced in central collisions
of heavy nuclei (Pb+Pb [1, 2], Au+Au [12, 13, 14]) as well as K+ and K0

S

mesons produced in p+p and p+p interactions. The solid, dashed and dotted
lines indicate parameterizations obtained for whole, “low” and “high” mT

intervals, respectively.
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Invariant Spectra

Freeze-out hypersurface Σ in cylindrical coordinates R∗ = R∗(t, z)

Particle 4-momentum pµ. Hydrodynamic 4-velocity of fluid uµ.

For arbitrary freeze-out hypersurface (with space- and time-like

parts) the invariant spectrum is given by cut-off distribution

E
d3N

dp3
=

∫
Σ

pµ dΣµ
g

(2π)3
e−

pνuν
T Θ (pρ dΣρ) ( 1.1)

It accounts for positive particle numbers. dΣµ is external normal.
K.A.B. Nucl.Phys. A606 (1996) 559.

For space-like hypersurface ds2 = dt2 − dR2 − dz2 < 0, pρ dΣρ > 0
the cut-off distribution reduces to the Cooper-Frye result

Phys.Rev. D10 (1974) 186

It can be shown that under the following assumptions:

• Bjorken expansion in the longitudinal direction z;

• The freeze-out occurs at critical temperature T = 170 ± 10
MeV of the quark-hadron phase transition;

the spectrum of heavy hadrons can be approximated as

dNi

dm2
T

∝ mT

∫ R

0

rdr K1

(
mT cosh yT

T

)
I0

(
pT sinh yT

T

)
, ( 1.2)

Eq. (1.2) is obtained under assumption of the constant longitu-

dinal proper time τ =
√

t2 − z2 freeze-out.

vT = tanh yT - transverse velocity, yT - transv. rapidity.



 Problem
Same T = 170+/-10 MeV values in A+A collisions 
are explained by transition to/from QGP.
Why T values in El. Particle collisions are nearly 
the same? Is there  QGP formed? Why don’t we 
see it?
Do Const T values in El. Particle collisions signal 
a phase transition? 
Usually it depends on conditions:                
pressure = Const, or Volume = Const, or ...



There is gap in our understanding of 
A+A and h+h reactions!

h+h, e+e 
data

A+A data



Statistical Bootstrap Model

The first evidence for ρ(E) = C eαE density of states was found

numerically in 1958 having 15 particles only!

G. Fast, R. Hagedorn and L. W. Jones, Nuovo Cimento 27 (1963) 856;

G. Fast and R. Hagedorn, Nuovo Cimento 27 (1963) 208

Theory (prediction): E2 dσel

dω
|90≈ A E e−3.17E (1)

... And only in 1964 it was the first experimental evidence in

favor of that. J. Orear, Phys. Lett. 13 (1964) 190

For large angle p + p → π + d at 2.4 GeV ≤ E ≤ 6.8 GeV

Consequence: For entropy S = α En ⇒ T = 1/(n α En−1)

Then T = Const leads to n = 1 ⇒ ρ(E) = C eS = C eαE

i.e. exponentially growing spectrum!

R. Hagedorn, Suppl. Nuovo Cimento 3 (1965) 147

Consider Boltzmann n-particle Grand Canonical Partition (GCP)

σn(E, V, m) =
1

n!

[
V

(2π)3

]n ∫
δ

(
E −

n∑
i=1

Ei

)
n∏

i=1

(4πp2
i dpi) (2)

Its Laplace transform is the n-particle partition

Zn(T, V, m) =
1

n!

[
V

(2π)3

]n
[
4π

∫
e−

√
p2+m2

T p2 dp

]n

(3)



It was heresy and Weisskopf forbade to publish it as CERN 
preprint! But 1964 data confirmed an exponential form.
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The first evidence for ρ(E) = C eαE density of states was found
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ρ(m) ≈ m−3 exp
[

m
TH

]
for m → ∞
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FIG. 1: Accumulated spectrum of non-strange mesons plotted
as a function of mass (step-like lines). The lower curve at
high m corresponds to particles listed in the Particle Data
Tables of Ref. [7], while the higher two curves include the new
experimental and theoretical states as described in the text.
The middle curve includes the states listed in Refs. [13, 14],
while the top curve adds the states with hidden strangeness.
The thin dashed (solid) line corresponds to the exponential fit
to the spectra of the old (new) data. The arrows indicate the
approximate upper values in m of the validity of the Hagedorn
hypothesis for the old and new data, respectively.

the proposed idea that the spontaneously broken chiral
symmetry of QCD should be effectively restored in the
highly excited hadrons (one terms this phenomenon as
the chiral symmetry restoration of the second kind) [10,
11, 12]. This kind of chiral symmetry restoration implies
that the excited hadron states fill out multiplets of the
chiral U(2)L×U(2)R group. Indeed, the newly discovered
meson states [8, 9] turned out to systematically fall into
almost degenerate chiral multiplets with a few missing
states yet to be discovered [13, 14].

In this note we extend the analysis of Refs. [15, 16] and
include all mesons listed in Refs. [13, 14]. We stress that
in addition to the experimental states which have been
reported in Refs. [8, 9] we add a few still missing states
(marked with the question signs in Refs. [13, 14]) and re-
construct their energies according to the known energies
of their chiral partners. We consider only the J = 0, 1,
2, and 3 states, where the experimental information is
rather complete.

In addition to these states we also consider the states
with hidden strangeness, i.e. composed of the s̄s pairs.
These states could not be seen in p̄p. Hence here our pro-
cedure is somewhat more speculative. We assume that
any isosinglet n̄n = ūu+d̄d√

2
, which is experimentally seen

in p̄p, should be accompanied by an s̄s state with the
mass approximately 200 MeV higher. Hence, given the
complete amount of the n̄n states listed in Refs. [13, 14]
we add the corresponding s̄s states.

Rather than comparing the density of states ρ(m) itself

to the data, it is customary to form the accumulated
number of states of mass lower than m,

Nexp(m) =
∑

i

giΘ(m − mi), (2)

where gi = (2Ji+1)(2Ii+1) is the spin-isospin degeneracy
of the ith state, and mi is its mass. The theoretical
counterpart of Eq. (2) is

Ntheor(m) =

∫ m

0

ρ(m′)dm′. (3)

Working with N(m) rather than ρ(m) conveniently
avoids the need of building histograms, but clearly it is
a purely technical issue and the conclusions drawn below
remain unchanged if one decides to work with ρ(m) itself.

The results of our compilation for non-strange mesons
are shown in Fig. 1. The lines with steps correspond
to Eq. (2). Above m = 1.8 GeV the curves split into
three, with the lower one representing the compilation
of Ref. [15] based of the 1998 review of PDG [7]. The
middle curve contains in addition the states listed in
refs. [13, 14], while the top curve includes also the hidden-
strangeness states, as described above. It is clear from
Fig. 1 that the included new states nicely line up along
the exponential growth, thus extending the range of the
Hagedorn hypothesis seen in the data. We also note
that adding up the hidden-strangeness states has a much
smaller effect than adding the states of Refs. [13, 14],
which is simply due to a lower isospin degeneracy factor.

The thin solid lines in Fig. 1 show the results of the
exponential fits with f(m) = 1 in Eq. (1, 3), which is the
simplest choice. While for the old data the least-squares
method yields ρ(m) = 2.84/GeVexp[m/314 MeV)], with
the states of Ref. [13, 14] included we obtain ρ(m) =
4.73/GeVexp[m/(367 MeV)], and with the additional s̄s
states we get ρ(m) = 4.52/GeVexp[m/362 MeV)]. The
fit was made up to m = 1.8 GeV with the old data and
up to m = 2.3 GeV with the new data. The higher value
for TH obtained with the new data corresponds to the
lower slope in Fig. 1. Certainly, the values of the fitted
parameters should be taken with care, since they also
reflect the assumed fitting range in m. It should also
be noted, that adding more states in the range around
2 GeV, when experimentally found, would increase the
slope, thus decreasing TH .

In this place the reader may be a bit surprized with
the quoted high values of TH , much higher than the
typically cited values in the range of 200 MeV. The is-
sue, as discussed in detail in Ref. [17], has to do with
the choice of the “slowly-varying” function f(m). The
point is that typical model predictions for this func-
tion are not so slowly varying in the range of data.
For instance, with the original Hagedorn choice f(m) =
const/(m2 + 500 MeV2)5/4 we get much lower values for
TH . With this form we obtain for the bottom to top
curves of Fig. 1 the following values: TH = 196, 230, and
228 MeV, respectively. The choice of the fitting range in
m is as stated above.



Bag Model is a foundation of our phenomenology.                 
It gave  a first evidence that transition to Partonic World is     
a phase transition. Resonances are small bags of QGP. 
How  does it explain  Hagedorn spectrum with Const T?
Consider a single heavy bag of 0 baryonic charge in vacuum. 
0 external pressure fixes the temperature (g is # d.o.f):                  

Hagedron Spectrum and Bag ModelStatistical Bootstrap Model

For N > Nkin
B one has to replace T ∗(m+

H) ← To(N) and m+
H ← mo

• Lower mass cut-off does not affect our results much.

• In Nkin
B vicinity there may exist 10–20 % effect on T ∗

ε = g π2

30
T 4

H + B

p = g π2

90
T 4

H − B ≈ 0

p = g
π2
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T 4

H − B = 0 ⇒ TH =
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90

gπ2
B

]1
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Then entropy of the bag is

S =
ε(TH)V

TH
≡ Mass

TH
⇒ ρ(Mass) = exp [S] = exp

[
Mass

TH

]



Everything looks fine, BUT...
Example #1:  1-d Harmonic Oscillator

For 1-d Harmonic Oscillator with energy & in contact 
with Hagedorn resonance (just exponential spectrum      
for simplicity). Total energy is E.
The microcanonical probability of state & is:
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Statistical Bootstrap Model

Vdes one finds

E

Vdes
≈
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m0

dm m

(
mT

2π

)3/2

exp

[
m

TH
− m

T

]
m−3 ⇒

As T → TH − 0+ it follows E → ∞
Peculiar thing is that in the r.h.s. of mass integral

infinitely heavy states contribute! Where do they come from?

For E → ∞ : ε̄ → TH

⇒ for spectrum ρ(m) one obtains

Zρ(T, V ) = exp

[
V T

2π2

∫ ∞

0

m2K2

(m

T

)
ρ(m) dm

]
(5)

Where to get the spectrum ρ(m) from?

S. Frautschi suggested the Bootstrap Equation of the form
S. Frautschi, Phys. Rev. D3 (1971) 2821

ρ(m) = δ(m−m0)+
∞∑

n=2

1

n!

∫
δ

(
m −

n∑
i=1

mi

)
n∏

i=1

(ρ(mi) dmi) (6)

⇒The fireball on mass m is either “input particle” with mass m0,

or it is composed of any number of fireballs of any masses such
that

∑
mi = m
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The total level density is
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NT and obtain

(U − M)
3

2
N ≈ U
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2
N exp
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I.e. it is grand canoical result!!!

The most probable energy partition is

ρH

• TH is the sole temperature characterizing the system:

• A Hagedorn-like system is a perfect thermostat!
Exponent is 

Grand canonical!
With fixed T!



Example #2:  An  Ideal  Vapor 
coupled to Hagedorn resonance

Consider microcanonical partition of N particles of 
mass m and kin. energy &. The total level density is 
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 Intermediate Conclusion:

For Hagedorn resonances the Grand canonical 
ensemble with  T other than Hagedorn T  does not 
make any sense!
Because it is equivalent to bring in contact  2 
thermostats with different T



Example #3: An Ideal Particle Reservoir 

If, in addition, particles are 
generated by the Hagedorn 
resonance, their concentration 
is volume independent!

ρΗ(E)

ideal vapor ρiv
• particle mass = m
• volume = V
• particle number = N
• energy = ε
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Remarkable result because it mean saturation 
between gas of particles and Hagedorn thermostat!



Important Finding!
Volume independent concentration of vapor means:
for increasing volume of system gas particles will be 
evaporated from Hagedorn resonance (till it vanishes);
by decreasing volume we will absorb gas particles to 
Hagedorn resonance!   Compare to ordinary water!
Literally, it is a liquid (Hagedorn resonance)                   
in equilibrium with its vapor! 

ρH(E)



The Story so far...
Anything in contact with a Hagedorn thermostat 
acquires the Hagedorn temperature.
If particles (e.g. pions) can be created from a 
Hagedorn thermostat, they will form a saturated 
vapor at fixed (Hagedorn) temperature.                                    
If different particles (i.e. of different  masses m) are 
created, they will be in chemical equilibrium.
Because of these properties the radiant Hagedorn  
resonance should be similar to a compound nucleus 
(same spectra and branching ratios), but at fixed T.



The role of the lower mass cut-off
So far we ignored that for light hadrons the 
spectrum is not exponential. Also translational 
d.o.f. of the Hagedorn thermostat were ignored.
For a  single Hagedorn thermostat  ( a = const ):

Statistical Bootstrap Model

Vdes one finds
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As T → TH − 0+ it follows E → ∞
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infinitely heavy states contribute! Where do they come from?
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The total level density is
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I.e. it is grand canoical result!!!

The most probable energy partition is

ρH

ρH(mH) = exp[mH/TH](mo/mH)a for mH ≥ mo

The mass cut-off: mo & TH

From an analysis by W. Broniowski et. al., hep-ph/0407290 ⇒
mo < 2 GeV.

Statistical Bootstrap Model

The most probable energy partition is

ρH

ρH(mH) = exp[mH/TH](mo/mH)a for mH ≥ mo

The mass cut-off: mo " TH

From an analysis by W. Broniowski et. al., hep-ph/0407290 ⇒
mo < 2 GeV.
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N-dependence and Kinematic Limit
For  such N  the maximum 
of microcanonical 
partition exists.
Otherwise, for 

Statistical Bootstrap Model
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The mass cut-off: mo " TH
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mo < 2 GeV.
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• TH is the sole temperature characterizing the system:

• A Hagedorn-like system is a perfect thermostat!
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Nkin
B ! 1, then T ∗(m+

H) in (16) should be replaced by

To(NB) ≡ 2(U−mBNB−mo)
3(NB+1) .

Fig. 1 shows that for a > 3
2 the system’s tempera-

ture T = T ∗(m+
H) as a function of NB remains almost

constant for NB < Nkin
B , reaches a maximum at Nkin

B

and rapidly decreases like T = To(NB) for NB > Nkin
B .

For a < 3
2 the temperature has a plateau T = T ∗(m+

H)
for NB < Nkin

B , and rapidly decreases for NB > Nkin
B

according to To(NB).
The same results are valid for the ultrarelativistic

treatment of Boltzmann particles. Comparing the non-
relativistic and ultrarelativistics expressions for the mi-
crocanonical partition, i.e. equations (4) and (5), respec-
tively, one finds that the derivation of the ultrarelativis-
tic limit requires only the substitution NB → 2NB and
mB/TH → 0 in equations (6 – 16). Note that this substi-
tution does not alter the expression for the temperature
of the system, i.e. the right hand side of (8).

Finally, we show that for a heavy Hagedorn thermo-
stat (m+

H ! mo) these results remain valid for a single
Hagedorn thermostat split into NH pieces of the same
mass. Substituting mH → mHNH in the nonrelativistic
expressions (4) and minimizing it with respect to mH , the
temperature of the system in the form of equation (8)
is T ∗(m∗

HNH), where the mass of NH Hagedorn ther-
mostats m∗

H is related to the solution m+
H of equation

(11) as m∗
H = m+

H/NH . Since the original single ther-
mostat of mass m+

H was assumed to be heavy, it follows
T ∗(m∗

HNH) = T ∗(m+
H) → TH . A more careful study (see

also [12]) using an exact expression for the microcanon-
ical partition of NH Hagedorn thermostats of the same
mass mH gives the same result, if mH ! mo. A gen-
eralization of these statements to the case of NH heavy
Hagedorn thermostats of different masses also leads to
the same result. Thus, splitting a single heavy Hagedorn
thermostat into an arbitrary number of heavy resonances
(heavier than mo) does not change the temperature of the
system.

IV. CONCLUSIONS

In the present work we generalized the SBM results
[26] to systems of finite energy by showing explicitly that
even a single resonance with the Hagedorn mass spec-
trum degeneracy, i.e. a Hagedorn thermostat, keeps an
almost constant temperature close to TH for any number
of Boltzmann particles 3 < NB ≤ Nkin

B . For the high
energy limit U ! mo this means that a single Hagedorn
resonance defines the temperature of the system to be
only slightly different from TH until the energy of the
Hagedorn thermostat is almost negligible compared to
U . In contrast to the grand canonical formulation of the
original SBM [26], in the presence of a Hagedorn thermo-
stat the temperature TH can be reached at any energy
density.

The thermostatic nature of a Hagedorn system obvi-
ously explains the ubiquity of both the inverse slopes of
measured transverse mass spectra [24] and hadronization
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FIG. 1: A typical behavior of the system’s temperature as
the function of the number of Boltzmann particles NB for
a = 3 and a = 0 for the same value of the total energy U =
30mB . Due to the thermostatic properties of a Hagedorn
resonance the system’s temperature is nearly constant up to
the kinematically allowed value N

kin
B given by (15).

temperature found in numerical simulations of hadrons
created in elementary particle collisions at high energies
[23, 28, 29]. By a direct evaluation of the microcanonical
partition we showed that in the presence of a single Hage-
dorn thermostat the energy spectra of particles become
exponential with no additional assumptions, e.g. phase
space dominance [30] or string tension fluctuations [31].
Also the limiting temperature found in the URQMD cal-
culations made in a finite box [32] can be explained by
the effect of the Hagedorn thermostat. We expect that, if
the string parametrization of the URQMD in a box [32]
was done microcanonically instead of grand canonically,
then the same behavior would be found.

The Hagedorn thermostat model generalizes the sta-
tistical hadronization model which successfully describes
the particle multiplicities in nucleus-nucleus and elemen-
tary collisions [23, 28, 29]. The statistical hadronization
model accounts for the decay of heavy resonances (clus-
ters in terms of Refs. [23, 28, 29]) only and does not
consider the additional particles, e.g. light hadrons, free
quarks and gluons, or other heavy resonances. As we
showed, the splitting of a single heavy Hagedorn reso-
nance into several does not change the temperature of
the system. This finding justifies the main assumption
of the canonical formulation of the statistical hadroniza-
tion model [28] that smaller clusters may be reduced to a
single large cluster. Thus, recalling the MIT Bag model
interpretation of the Hagedorn mass spectrum [5, 6], we
conclude that quark gluon matter confined in heavy res-

A typical behavior (E = 30m)
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It seems that same T value as in GCE cannot be reached
because we have a single state of mass m0!

It is not a proof of non-equivalence, but indication that
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Hagedorn resonance does not have 
sufficient mass to keep equilibrium

For a > 1.5 Hagedorn T 
is not a limiting one!



Inverse Slopes
The microcanonical partition can be cast

Statistical Bootstrap Model

The most probable energy partition is

ρH

ρH(mH) = exp[mH/TH](mo/mH)a for mH ≥ mo

The mass cut-off: mo " TH

From an analysis by W. Broniowski et. al., hep-ph/0407290 ⇒
mo < 2 GeV.
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• Lower mass cut-off does not affect our results much.

• In Nkin
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Inverse slope of momentum distribution
 is a temperature!



Stability  Against  Fragmentation
      For no translational entropy the Hagedorn                      
      thermostat (=bag) is indifferent to fragmentation.                          

       Translational d.o.f. do not change this result.
        Present model not only EXPLAINS why  Becattini’s

         Stat. Hadronization Model gives T close to Hagedorn T,

         but it also justifies the validity of his major assumption that

         all fireballs originate from a Singe Protofireball!
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How to observe it?
In vacuum a Hagedorn thermostat radiates 
hadrons. For slow radiation the pressure due to 
radiation is small ( 2 - 3 % of Bag pressure). Thus, 
measuring energy and volume (HBT) for vanishing 
baryon number, one can find the # of d.o.f.    g:

Statistical Bootstrap Model

For N > Nkin
B one has to replace T ∗(m+

H) ← To(N) and m+
H ← mo

• Lower mass cut-off does not affect our results much.

• In Nkin
B vicinity there may exist 10–20 % effect on T ∗

ε = g π2

30
T 4

H + B

p = g π2

90
T 4

H − B ≈ 0

There was an attempt by Purdue group to 
measure energy density in el. particle collisions.

See T.Alexopoulos et al, PLB 528 (2002)
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Grand canonical: fix volume Vdes and T close to TH
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Here states with m > E contribute!

Microcanonical: fix energy to smallest mass m0 and adjust
volume to get same E
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Will you get the same T value as in GCE?

It seems that same T value as in GCE cannot be reached
because we have a single state of mass m0!

It is not a proof of non-equivalence, but indication that
Microcanonical Ensemble must be used!

Vdes and T close to TH

As T → TH − 0+ it follows E → ∞
Peculiar thing is that in the r.h.s. of mass integral

infinitely heavy states contribute! Where do they come from?

For E → ∞ : ε̄ → TH

m∗
H ≈ E m∗

H ≈ mo ε ≈ 1.10 ± 0.26 Gev/fm3 and g ≈ 23.5 ± 6
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Different models show that parameter a  in Hagedorn mass 
spectrum is a=3 or  even a>3. 

In this case at the end of radiation

For pions it is unobservable, but for  heavy hadrons it is matter! 
Thus, heavy hadrons emitted about the end of radiation should 
have an enhanced probability, compared to early time emission!

Best candidate to see Flash (V. Koch) is, probably, double phi 
decay?

For more definite predictions we need better model and better data!

Flash at Double Phi Decay?
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infinitely heavy states contribute! Where do they come from?

For E → ∞ : ε̄ → TH

m∗
H ≈ E m∗

H ≈ mo ε ≈ 1.10 ± 0.26 Gev/fm3 and g ≈ 23.5 ± 6

m∗
H → mo and T ∗ ≈ 1.1 TH − 1.2 TH

The total level density is



Conclusions
Exponential mass spectrum is a very special object. 
It imparts the Hagedorn temperature to particles in contact 
with it = perfect thermostat!
It is also a perfect particle reservoir!
Grand canonical treatment should be used with great care! 
Microcanonical one is the right one.
Our results justify the Statistical Hadronization Model and 
explain why hadronization T and inverse slopes in el. 
particle collisions are about 170 MeV. 
This is phase transition in finite system. No liberation of 
color d.o.f. is necessary for that!
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